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Abstract: Supergravity backgrounds dual to a class of exactly marginal deformations of

N = 4 supersymmetric Yang-Mills can be constructed through an SL(2, R) sequence of

T-dualities and coordinate shifts. We apply this transformation to multicenter solutions

and derive supergravity backgrounds describing the Coulomb branch of N = 1 theories at

strong ’t Hooft coupling as marginal deformations of N = 4 Yang-Mills. For concreteness

we concentrate to cases with an SO(4) × SO(2) symmetry preserved by continuous distri-

butions of D3-branes on a disc and on a three-dimensional spherical shell. We compute

the expectation value of the Wilson loop operator and confirm the Coulombic behaviour

of the heavy quark-antiquark potential in the conformal case. When the vev is turned on

we find situations where a complete screening of the potential arises, as well as a confining

regime where a linear or a logarithmic potential prevails depending on the ratio of the

quark-antiquark separation to the typical vev scale. The spectra of massless excitations

on these backgrounds are analyzed by turning the associated differential equations into

Schrödinger problems. We find explicit solutions taking into account the entire tower of

states related to the reduction of type-IIB supergravity to five dimensions, and hence we go

beyond the s-wave approximation that has been considered before for the undeformed case.

Arbitrary values of the deformation parameter give rise to the Heun differential equation

and the related Inozemtsev integrable system, via a non-standard trigonometric limit as

we explicitly demonstrate.
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1. Introduction

The AdS/CFT correspondence is the first explicit realization of the long suspected descrip-

tion of the perturbative expansion of an SU(N) gauge theory in the large N limit in terms

of a certain string theory [1]. As it relates the weak coupling regime of N = 4 supersym-

metric Yang-Mills to the strong coupling regime of type IIB string theory compactified

on AdS5 × S5, and vice versa [2 – 4], a complete formulation of the correspondence would

require a precise knowledge of the strong coupling limit of each theory. However, in spite
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a detailed proof still remains a challenge, diverse tests of the correspondence, even beyond

the supergravity limit from the study of sectors with large quantum numbers, have lead to

fascinating insights on both the gauge and gravity sides.

A natural step forward towards a more complete understanding of the duality is the

extension of the correspondence to less symmetric theories. An appealing candidate is the

case of the exactly marginal deformations of N = 4 Yang-Mills preserving N = 1 supersym-

metry [5], because they contain a continuous deformation parameter. A gravity dual was

recently derived for the Leigh-Strassler or β-deformation of the N = 4 theory through an

SL(2, R) sequence of T-duality transformations and coordinate shifts [6]. The construction

of this deformed background has uncovered an interesting set of new tests of the corre-

spondence. A three-parameter deformation of AdS5 × S5 dual to a non-supersymmetric

marginal deformation of N = 4 Yang-Mills was soon after found, as well as a Lax pair for

the bosonic piece of the string in the case of real deformations of the background, thus

implying integrability of the corresponding bosonic string sigma model [7]. In addition,

the energies of semiclassical strings rotating with large angular momenta in the deformed

background were then compared to anomalous dimensions of large gauge theory operators

in the β-deformed N = 4 theory [8]. Diverse features of the deformed theories and some

related spin offs have been further explored recently, both on the gravity [9]–[13] and on

the field theory [14]–[20] sides of the correspondence.

In this paper we will extend the construction in [6] to supergravity backgrounds describ-

ing the Coulomb branch of marginally deformed N = 4 Yang-Mills. We enter the Coulomb

branch of the N = 4 theory when the SO(6) scalar fields acquire Higgs expectation values.

On the gravity side the non-vanishing scalar expectation values correspond to a multicenter

distributions of branes. We will use some of these backgrounds to find a gravity dual for

the Coulomb branch of the β-deformation of N = 4 Yang-Mills. The plan of the paper is

the following: In section 2 we will apply a sequence of T-dualities and coordinate shifts to

general supergravity backgrounds with at least a U(1)×U(1)×U(1) global symmetry group.

In section 3 we consider two solutions corresponding to two different brane distributions,

with SO(2)×SO(2)×SO(2) and SO(4)×SO(2) global symmetry. Section 4 is devoted to the

issue of supersymmetry for the marginally deformed backgrounds. In section 5 we probe

the geometry of the deformation by computing the expectation value of the Wilson loop

operator along the transversal space for a distribution of D3-branes on a disc and on a

three-dimensional spherical shell preserving SO(4)×SO(2) symmetry. Section 6 contains a

detailed analysis of the spectra of massless excitations by studying the Laplace equation in

the backgrounds with SO(4)×SO(2) symmetry as well as the conformal case. The regime

of arbitrary values of the deformation parameter leads to the Heun differential equation,

which we relate to a generalized trigonometric limit of the Inozemtsev integrable system.

We conclude in section 7 with a discussion and further directions of research.

2. The general set up

In this section we will construct supergravity backgrounds dual to the Coulomb branch of

marginally deformed N = 4 supersymmetric Yang-Mills following the SL(2, R) sequence of
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T-dualities and coordinate shifts introduced in [6]. We will therefore start from supergravity

solutions modeling the Coulomb branch of the N = 4 theory at strong coupling. In these

backgrounds only a metric and the self-dual 5-form are turned on. The corresponding

expressions can be written in terms of a harmonic function in R
6, i.e. the transverse space

to the branes. The metric has the form

ds2
10 = H−1/2ηµνdxµdxν + H1/2dxidxi , µ = 0, 1, 2, 3 , i = 1, 2, . . . , 6 , (2.1)

the self-dual 5-form is given by

F5 = dA4 + ∗10dA4 , (dA4)0123i = −∂iH
−1 , (2.2)

and the dilaton is a constant Φ0. The harmonic function H is in general given by

H = R4

∫

R6

d6x′ ρ(x′)
|x− x′|4 , (2.3)

where the density of the brane distribution is normalized to unity and should be positive

definite. We have already taken the field theory limit so that asymptotically the space

is AdS5 × S5 with radius R4 = 4πg2
YMN in string units. The distribution of the brane

centers breaks the SO(6) global symmetry of the background. Generically this breaking is

complete, but, in the cases we will be interested, a smaller subgroup of the R-symmetry is

retained. In particular in order to perform the combination of dualities in this paper and

the same time preserve some supersymmetry, we will need at least a group isomorphic to

U(1)3.

Let us start with a general background in which the ten spacetime coordinates are

split into a seven-dimensional part parametrized by xI , with I = 1, 2, . . . , 7, whereas the

remaining three coordinates form a 3-torus parametrized by the angles φi, i = 1, 2, 3. We

therefore take the following metric

ds2
10 = GIJ(x)dxIdxJ +

3
∑

i=1

zi(x)dφ2
i , I = 1, 2, . . . , 7 , (2.4)

where, as indicated, the three positive definite functions zi could depend on the transverse

to the torus coordinates, the xI ’s. In the case that the φi’s parametrize the Cartan torus of

an undeformed 5-sphere, the zi’s sum up to unity. In all other cases in which the five-sphere

is deformed they do not obey any restriction except of course those arising from preserving

supersymmetry and satisfying the field equations. The ranges of the angle variables, the

associated Killing vectors and their norms are

φi ∈ (0, 2π) , ξ1 = (0, 1, 0, 0) , ξ2 = (0, 0, 1, 0) , ξ3 = (0, 0, 0, 1) , ξ2
i = zi , (2.5)

where i = 1, 2, 3. In general there are degeneration surfaces where at least one of the norms

vanishes. In our case they are defined by the equations zi = 0. With the above choice

for the ranges of the angular coordinates, regularity of the metric and absence of conical

singularities at the degeneration surfaces requires that the associated “surface gravity”

– 3 –



J
H
E
P
0
3
(
2
0
0
6
)
0
6
9

(important as a notion in black hole solutions with Lorentzian signature) equals to one. In

our case this means that

κ2
i ≡ GIJ∂Iξ

2
i ∂Jξ2

i

4ξ2
i

∣

∣

∣

zi=0
=

GIJ∂Izi∂Jzi

4zi

∣

∣

∣

zi=0
= 1 , (no sum over i = 1, 2, 3) . (2.6)

Note that for simplicity we have not allowed mixing terms. Nevertheless such terms

can also be included to allow for more general backgrounds. Under the above assumptions

the self-dual 5-form is given by

F5 = dC(1) ∧ dφ1 ∧ dφ2 ∧ dφ3 +
1√

z1z2z3
∗7 dC(1) , (2.7)

for some 1-form C(1) = C
(1)
I dxI . This is clearly self-dual and the 1-form C(1) should be

such that the exterior derivative of the second term is zero. Hence, there must be a 4-form

C(4) such that

dC(4) =
1√

z1z2z3
∗7 dC(1) . (2.8)

Consider now the change of variables

φ1 = ϕ3 − ϕ2 , φ2 = ϕ1 + ϕ2 + ϕ3 , φ3 = ϕ3 − ϕ1 , (2.9)

with inverse

ϕ1 =
1

3
(φ1 + φ2 − 2φ3) , ϕ2 =

1

3
(φ2 + φ3 − 2φ1) , ϕ3 =

1

3
(φ1 + φ2 + φ3) . (2.10)

This transforms the three-dimensional part of the metric to

3
∑

i=1

zidφ2
i = gijdϕidϕj

= (z2 + z3)dϕ2
1 + (z1 + z2)dϕ2

2 + (z1 + z2 + z3)dϕ2
3

+2z2dϕ1dϕ2 + 2(z2 − z3)dϕ1dϕ3 + 2(z2 − z1)dϕ2dϕ3 . (2.11)

The U(1) × U(1) global symmetry is generated by shifts of the angles ϕ1 and ϕ2. This

shifts correspond to transformations of the three complex superfields of the N = 4 SYM

theory as

(Φ1,Φ2,Φ3) → (Φ1, e
iα1Φ2, e

−iα1Φ3) and (e−iα2Φ1, e
iα2Φ2,Φ3) , (2.12)

under which the superpotential of the marginally deformed theory

W = Tr(eiπγΦ1Φ2Φ3 − e−iπγΦ1Φ3Φ2) , (2.13)

remains invariant. The R-symmetry will then correspond to shifts of the remaining angle

ϕ3. Since all fields transform in the same way under this symmetry the superpotential is not

invariant, and transforms with a weight as it should be. The supercharges preserved by the

original background fit into representations of the total U(1)×U(1)×U(1)R symmetry. The

solutions that will be generated below by the combination of T-dualities and a coordinate
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shift will preserve a fraction of the original supersymmetry because they will not involve

the angle ϕ3 and therefore the U(1)R symmetry will not mix with the global U(1)×U(1).

This will be examined in detail in section 4.

The vacuum structure of the theory (the Coulomb branch) is described by the conditions

Φ1Φ2 = qΦ2Φ1 , q ≡ e−2iπγ , and cyclic , (2.14)

which are valid for large N (exact for U(N)). For general values of γ this requires traceless

N × N matrices, where in each entry at most one of them is non-zero.1 We note that in

the undeformed theory any traceless N × N matrix is allowed.

2.1 The deformation

We will now deform our background with an SL(2, R) ⊂ SL(3, R) transformation of the

complete SL(3, R) × SL(2, R) duality group of type-IIB supergravity compactified on the

global U(1) × U(1) torus.2 We repeat here essentially the steps of [6] and [7], but we will

no longer consider the conformal constraint
∑

i zi = 1. In order to clarify the derivation

we will include all details.

As a first step we will perform a T-duality along the ϕ1 direction. In general, under

T-duality the fields in the NS-NS sector form a closed set and transform among themselves.

Hence for these we may use the standard rules [24]. In contrast, the transformation rules

for the R-R sector fields involve those in the NS-NS sector (see, for instance, [25]). We find

that the non-zero components of the metric and antisymmetric tensors are

g̃11 =
1

z2 + z3
, g̃22 =

z1z2 + z1z3 + z2z3

z2 + z3
,

g̃33 = z1 +
4z2z3

z2 + z3
, g̃23 =

2z2z3

z2 + z3
− z1 , (2.15)

b̃12 =
z2

z2 + z3
, b̃13 =

z2 − z3

z2 + z3
.

In addition we obtain for the dilaton

e−2Φ̃ = z2 + z3 , (2.16)

and for the R-R 3-form

Ã
(3)
Iϕ2ϕ3

= 3C
(1)
I . (2.17)

We will now perform a coordinate shift

ϕ2 → ϕ2 + γϕ1 . (2.18)

1Studies on the Coulomb branch of the theory from the gauge theory side have been done in [21, 22],

where, in addition to the generic behaviour we study here with gravity duals, it was shown that there exist

exceptional Coulomb branches for special values of the deformation parameter.
2Prototype examples where such transformations can be performed are provided by four-dimensional

NS-NS backgrounds with two commuting U(1) isometries. Starting with the exact string background cor-

responding to the SU(2)/U(1)×SL(2, R)/U(1) coset WZW models we recognize, after the transformation,

the background describing NS5-branes uniformly distributed on a circle in their transverse space [23]. A

similar case to this was also considered in [6] where one starts with R
2 × R

2 in polar coordinates, instead

of the coset models.
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Then we find for the metric (we use upper case letters to denote the tensors after the shift)

G̃11 = g̃11 + γ2g̃22 = G−1 1

z2 + z3
, G̃22 = g̃22 =

z1z2 + z1z3 + z2z3

z2 + z3
,

G̃33 = g̃33 = z1 +
4z2z3

z2 + z3
, G̃23 = g̃23 =

2z2z3

z2 + z3
− z1 , (2.19)

G̃13 = γg̃23 = γ

(

2z2z3

z2 + z3
− z1

)

, G̃12 = γg̃22 = γ
z1z2 + z1z3 + z2z3

z2 + z3
,

where for notational convenience we have defined

G−1 = 1 + γ2(z1z2 + z1z3 + z2z3) . (2.20)

The antisymmetric tensor remains unchanged under the coordinate shift, i.e. B̃ab = b̃ab.

For the R-R 3-form this shift produces the non-zero components

Ã
(3)
Iϕ2ϕ3

= 3C
(1)
I , Ã

(3)
Iϕ1ϕ3

= 3γC
(1)
I . (2.21)

Next we perform again a T-duality transformation along the ϕ1 direction and find for the

metric

Gij = G
(

gij + 9γ2z1z2z3δi,3δj,3

)

, (2.22)

and for the antisymmetric tensor

B12 = γG(z1z2 + z1z3 + z2z3) ,

B13 = γG(2z2z3 − z1z2 − z1z3) , (2.23)

B23 = γG(z1z3 + z2z3 − 2z1z2) .

These expressions for the metric and antisymmetric tensor are written in the ϕi coordinate

system. Returning now, with the help of (2.10), to the original coordinates we obtain the

final result

ds2
10 = GIJdxIdxJ + G

[

3
∑

i=1

zidφ2
i + γ2z1z2z3(dφ1 + dφ2 + dφ3)

2

]

. (2.24)

For the antisymmetric tensor we get

B = γG(z1z2dφ1 ∧ dφ2 + cyclic in 1, 2, 3) (2.25)

and for the dilaton

e2Φ = e2Φ0 G . (2.26)

Finally the non-vanishing components of the R-R fields are given by

A(2) = −γC(1) ∧ (dφ1 + dφ2 + dφ3) ,

A(4) = GC(1) ∧ dφ1 ∧ dφ2 ∧ dφ3 + C(4) . (2.27)
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The 5-form is then

F5 = dA(4) − dB ∧ A(2) = GdC(1) ∧ dφ1 ∧ dφ2 ∧ dφ3 +
1√

z1z2z3
∗7 dC(1) , (2.28)

where we have used the identity dG = −γ2[d(Gz1z2)+cyclic in 1, 2, 3]. Its self-duality with

respect to the deformed metric (2.24) can be readily verified.

As usual, the supergravity description is valid if the curvature of the metric remains small

compared to the string scale. Let R2 be the overall scale, in string units, of the metric

(2.4), which implies that both the zi’s and the seven-dimensional metric scale like R2 and

that the combination γR2 is kept constant. Hence, we require that R À 1, but in addition

we should make sure that the metric does not degenerate at arbitrary points due to the

combination γR2 becoming large. Indeed, if γR2 À 1 then we see that the term zidφ2
i

in the metric (2.24) scales like 1/(γR)2 and therefore we should require that this scale is

large compared to unity.3 To summarize, for the supergravity description to be valid at a

generic point of the manifold we should have

R À 1 and γR2 ≡ γ̂ ¿ R . (2.29)

This is the same condition as that obtained for the conformal case in [6] where it was also

noted that the last condition is sufficient for the 2-torus parametrized by ϕ1,2 to stay much

larger than the string scale after the T-dualities. This can be shown to be the case here as

well by noting that after the combined T-dualities and the coordinate shift transformation,

the volume of the 2-torus is

Vol(2-torus) = G(z1z2 + z1z3 + z2z3)
1/2 ∼ R2

1 + γ̂2
, (2.30)

where the last expressions indicates, schematically, the way the volume depends on the

parameters R and γ at a generic point. In order for it to be larger than unity, the constant

γ̂ should be smaller than R.

The second of the conditions in (2.29) means that γ ¿ 1/R for the supergravity approxi-

mation to be valid. Then the deformation parameter q in (2.14) becomes unity. However,

this does not mean that we should admit arbitrary vev distributions to parametrize the

Coulomb branch of the theory, but only those corresponding to scalar fields satisfying

conditions (2.14).

We finally note that the periodicities of the angular variables φi remain intact in the

deformed background. To see that, note that the norms of the Killing vectors are now

given by

ξ2
i = G(zi + γ2z1z2z3) , i = 1, 2, 3 . (2.31)

A simple computation, using the fact that zi = 0 (for at least one zi), shows that ∂Iξ
2
i =

∂Izi + · · · , where the dots indicate terms that vanish at the degeneration surfaces faster

than the indicated first term. Using then the definition in (2.6), we find that indeed the

“surface gravity” equals one, κ2
i = 1.

3In the opposite case it is obvious that curvature invariants, such as the square of the Riemann tensor for

the deformed metric (2.24), will blow up at a generic point of the manifold and the supergravity description

will no longer be valid. Note also that string loop corrections are negligible at a generic point if eΦ0 ¿ 1,

independent of the deformation.
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3. Brane distributions

In this section we will apply the above construction to derive the explicit form of the

supergravity background describing the Coulomb branch of marginally deformed N = 4

supersymmetric Yang-Mills for two different brane distributions, namely a uniform contin-

uous distribution of D3-branes on a disc, and on a three-dimensional spherical shell. These

were first constructed as the extremal limits of rotating D3-brane solutions in [26, 23].

They were also used in several investigations in the literature within the AdS/CFT cor-

respondence starting with the works of [27, 28] and belong to the rich class of examples

representing continuous distributions of M- and string theory branes on higher dimensional

ellipsoids [29 – 31].

3.1 Solutions with SO(2)×SO(2)×SO(2) symmetry

In this case the transverse space coordinates are parametrized as

(

x1

x2

)

=
√

r2 − b1 sin θ

(

cos φ1

sin φ1

)

,

(

x3

x4

)

=
√

r2 − b2 cos θ sin ψ

(

cos φ2

sin φ2

)

, (3.1)

(

x5

x6

)

=
√

r2 − b3 cos θ cos ψ

(

cos φ3

sin φ3

)

.

where bi, i = 1, 2, 3 are some real constants. The ranges of variables are

r ≥ max(b1, b2, b3) , 0 ≤ θ, ψ <
π

2
, 0 ≤ φ1,2,3 < 2π . (3.2)

In this coordinate system the metric is given by

ds2 = H−1/2ηµνdxµdxν + H1/2 ∆r6

f
dr2

+r2H1/2

(

∆1dθ2 + ∆2 cos2 θdψ2 + 2
b2 − b3

r2
cos θ sin θ cos ψ sin ψdθdψ (3.3)

+
(

1 − b1

r2

)

sin2 θdφ2
1 +

(

1 − b2

r2

)

cos2 θ sin2 ψdφ2
2 +

(

1 − b3

r2

)

cos2 θ cos2 ψdφ2
3

)

,

where the diverse functions are defined as

H =
R4

r4∆
,

f = (r2 − b1)(r
2 − b2)(r

2 − b3) ,

∆ = 1 − b1

r2
cos2 θ − b2

r2
(sin2 θ sin2 ψ + cos2 ψ) − b3

r2
(sin2 θ cos2 ψ + sin2 ψ)

+
b2b3

r4
sin2 θ +

b1b3

r4
cos2 θ sin2 ψ +

b1b2

r4
cos2 θ cos2 ψ , (3.4)
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∆1 = 1 − b1

r2
cos2 θ − b2

r2
sin2 θ sin2 ψ − b3

r2
sin2 θ cos2 ψ ,

∆2 = 1 − b2

r2
cos2 ψ − b3

r2
sin2 ψ .

This metric can be interpreted as the supersymmetric limit of the most general non-

extremal rotating D3-brane solution [32, 33], with b1, b2 and b3 related to the three rotation

parameters after an adequate Euclidean continuation. It was also derived as a domain wall

solution within five-dimensional gauged supergravity and then uplifted to string theory [29].

We have also taken the field theory limit so that the space is asymptotically AdS5 × S5.

Comparing now (3.3) with (2.4) we see that

z1 =
R2

∆1/2

(

1 − b1

r2

)

sin2 θ ,

z2 =
R2

∆1/2

(

1 − b2

r2

)

cos2 θ sin2 ψ , (3.5)

z3 =
R2

∆1/2

(

1 − b3

r2

)

cos2 θ cos2 ψ .

The marginally deformed SO(2) × SO(2) × SO(2) solution is then obtained by reinstalling

these expressions in (2.24)–(2.28).4

Consider now the shift ϕ1,2 → ϕ1,2 + α1,2. Then we easily check that the complex coordi-

nates

w1 = x1 + ix2 , w2 = x3 + ix4 , w3 = x5 + ix6 , (3.6)

transform as the corresponding complex superfields in (2.12), and therefore there is in that

respect agreement with the deformed gauge theory.

3.2 Solutions with SO(4)×SO(2) symmetry

These solutions can be obtained by letting b1 = −r2
0 and b2 = b3 = 0 into the various

general expressions of the previous subsection. The radial variable obeys r ≥ 0 and the

metric (3.3) now becomes

ds2 = H−1/2ηµνdxµdxν + H1/2 r2 + r2
0 cos2 θ

r2 + r2
0

dr2

+H1/2
(

(r2 + r2
0 cos2 θ)dθ2 + (r2 + r2

0) sin2 θdφ2
1 + r2 cos2 θdΩ2

3

)

, (3.7)

where the harmonic function reduces in this case to

H =
R4

r2(r2 + r2
0 cos2 θ)

, (3.8)

and the 3-sphere line element is

dΩ2
3 = dψ2 + sin2 ψ dφ2

2 + cos2 ψ dφ2
3 . (3.9)

4See also [34] for related work using (3.3).
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The forms necessary to compute the NS-NS and R-R field strengths are

C(1) = R4 r2 + r2
0

r2 + r2
0 cos2 θ

cos4 θ sin ψ cos ψ dψ ,

C(4) = −R−4r2(r2 + r2
0 cos2 θ) dt ∧ dx1 ∧ dx2 ∧ dx3 . (3.10)

In our parametrization the configuration corresponds to a set of D3-branes uniformly dis-

tributed along the x1−x2 plane (equivalently for r = 0 and θ = π/2) on a disc of radius

r0. In this case we find

z1 = R2

(

1 +
r2
0

r2

)(

1 +
r2
0 cos2 θ

r2

)−1/2

sin2 θ ,

z2 = R2

(

1 +
r2
0 cos2 θ

r2

)−1/2

cos2 θ sin2 ψ , (3.11)

z3 = R2

(

1 +
r2
0 cos2 θ

r2

)−1/2

cos2 θ cos2 ψ .

The marginally deformed SO(4) × SO(2) background is obtained once we enter these ex-

pressions in (2.24)–(2.28), with the function G given now by

G−1 = 1 + γ̂2 cos2 θ

r2 + r2
0 cos2 θ

[

(r2 + r2
0) sin2 θ + r2 cos2 θ sin2 ψ cos2 ψ

]

. (3.12)

Finally, let us note that for r2
0 → −r2

0 we get a distribution of branes on the surface

of a four-sphere in the x3, . . . , x6 space of radius r0 (equivalently for r = r0 and θ = 0). In

that case the radial variable obeys r ≥ r0.

As a general comment we note that the background metric is singular in the location of

the distribution. The reason for this is that in this place the continuum approximation of

the distribution breaks down and it should be replaced by its discrete version. If we place

at each center Ncenter D3-branes such that 1 ¿ Ncenter ¿ N then the gravity description

of the gauge theory is still valid with the background corresponding to AdS5 × S5 in the

N = 4 case, and its exactly marginal deformation in the N = 1 case. The radius of the

space in this case is much smaller that in the continuum case. It is given by 4πg2
YMNcenter

in string units, but nevertheless it can still be taken to be much larger than the string scale.

In the remaining part of this article we will restrict to the simpler case of solutions with

SO(4) × SO(2) symmetry, or even to the conformal case. The latter follows immediately

when the vev parameter r0 = 0. Then the various expressions for the background fields

reduce to those in [6].

4. Supersymmetry

In this section we investigate the issue of supersymmetry for the deformed supergravity

backgrounds and explain in detail the origin of their reduced supersymmetry. We start by

explicitly showing that the solution for the Killing spinor in the undeformed case can split

into a part which is a singlet of the U(1) rotations corresponding to the angles ϕ1 and ϕ2,
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and a part orthogonal to that. After the T-dualities and the shift only this part survives

and remains a Killing spinor of the deformed theory. For any multicenter metric of the form

(2.1) the Killing spinor is of the form (this is a mere consequence of the supersymmetry

algebra. See, for instance, [35])

ε = H−1/8ε0 , (4.1)

where ε0 is a constant spinor subject to the projection

iΓ0123ε0 = ε0 , (4.2)

where the indexes refer to the directions along the brane. It is important to realize that

for a different form of the metric such as, in the case of our examples, (3.3) and (3.7), the

constant spinor will acquire a coordinate dependence. This can be found by solving the

covariant version of the condition ∂iε0 = 0, that is

∂iε0 + ωab
i Γabε0 = 0 , i = 1, 2, . . . , 6 , (4.3)

valid in all coordinate systems. We will concentrate on the background with SO(4)×SO(2)

global symmetry in the disc case. Then we have the flat metric in R
6 given by

ds2
R6 =

r2 + r2
0 cos2 θ

r2 + r2
0

dr2 + (r2 + r2
0 cos2 θ)dθ2 + (r2 + r2

0) sin2 θdφ2
1

+ r2 cos2 θ(dψ2 + sin2 ψ dφ2
2 + cos2 ψ dφ2

3) , (4.4)

as this is read off from (3.7). Using as a frame basis

e1 =

√

r2 + r2
0 cos2 θ

r2 + r2
0

dr , e2 =
√

r2 + r2
0 cos2 θ dθ , e3 = r cos θ dψ ,

e4 =
√

r2 + r2
0 sin θ dφ1 , e5 = r cos θ sin ψ dφ2 , e6 = r cos θ cos ψ dφ3 , (4.5)

we find that the spinor ε0 is given by

ε0 = e
1
2
f(r,θ)Γ12e

ψ

2
Γ13e

1
2
φiσi ε̄0 , (4.6)

where ε̄0 is a constant spinor and where we have defined

f(r, θ) = tan−1

(

r tan θ

(r2 + r2
0)

1/2

)

and σ1 = Γ24 , σ2 = Γ35 , σ3 = Γ16 . (4.7)

We are interested in extracting the part of the spinor that is invariant under variations

of the angles ϕ1 and ϕ2. After rewriting the spinor ε0 in the ϕi coordinate system and a

simple computation we find that the required spinor invariant under variations of ϕ1,2 is

given by

ε0,inv = e
1
2
f(r,θ)Γ12e

ψ

2
Γ13e

1
2
[(σ1+σ2+σ3)ϕ3+(σ2−σ1)ϕ2+(σ2−σ3)ϕ1]ε̄0,inv ,

= e
1
2
f(r,θ)Γ12e

ψ

2
Γ13e

3
2
σ3ϕ3 ε̄0,inv . (4.8)
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The constant spinor ε̄0,inv in terms of ε̄0 is given by

ε̄0,inv =
1

4
(11 − σ1σ2 − σ1σ3 − σ2σ3)ε̄0 , (4.9)

where the prefactor acts as a projector and by construction we have

σ1ε̄0,inv = σ2ε̄0,inv = σ3ε̄0,inv . (4.10)

The part of the spinor that is not invariant under the variations of ϕ1,2 will not survive

the T-dualities [36 – 38] because these are performed with respect to ϕ1 and ϕ2 as the

latter has been shifted by a ϕ1 component. This conclusion holds within the supergravity

approximation, but in a string theory context we expect to have the broken part of super-

symmetry realized with operators having no field theory analog [37]. Related to (4.2) and

(4.10) projections are expected to arise from a careful examination of the Killing spinor

equations for the deformed background in the generic case when the vev’s are turned on.

Being three independent conditions on the spinor we are left with N = 1 supersymmetry.

In the conformal limit (4.2) is not necessary, leading to the N = 1 superconformal case.

5. Wilson loops and the qq̄-potential

In this section we will evaluate the Wilson loop operator in the Coulomb branch of

marginally deformed N = 4 supersymmetric Yang-Mills using the SO(4) × SO(2) back-

ground we have described in section 3.2. According to the prescription in [39, 40], the

expectation value of a Wilson loop in the field theory can be computed by minimizing the

Nambu-Goto action for a fundamental string in a given supergravity background. The Wil-

son loop is constructed by pulling one brane apart from the brane distribution, thus giving

an expectation value ~Φ to a Higgs field. The quarks are the infinitely massive W-bosons

connecting the brane distribution to the far away brane. In order to probe the geometry on

the deformed background, we will introduce a relative angle between the quarks by giving

expectation values ~Φ1 and ~Φ2 to two U(1) factors in the global gauge group. In this way we

introduce two relative angles ~θi = ~Φi/|~Φi|, and the ends of the Wilson loop, corresponding

to the position of the massive quarks, are located at r = ∞ and two different points ~θ1 and
~θ2 on the transversal space. We will, in particular, choose coordinates such that the path

joining ~θ1 and ~θ2 is parametrized by φ2 and φ3 in (3.9). We will take a trajectory with

θ = 0 , ψ =
π

4
, φ2 = φ3 ≡ φ , x2,3 = constant . (5.1)

This is consistent with the corresponding equations of motion provided that the conserved

angular momenta for φ2 and φ3 coincide.5 Then, setting these values in (3.7) the reduced

four-dimensional metric becomes (in the Euclidean time)

ds2 = H−1/2
(

dτ2 + dx2
)

+ H1/2
(

dr2 + r2Gdφ2
)

, (5.2)

5We may consider a trajectory with θ = π/2 which is also consistent with the equations of motion.

However this choice is not sensitive to the deformation, since the dependence on the deformation parameter

γ̂ drops out. The results for this trajectory in the particular case of no angular separation for the quark-

antiquark system (l = 0 below) can be found in [28].
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with

H =
R4

r2(r2 + r2
0)

, G−1 = 1 +
γ̂2r2

4(r2 + r2
0)

. (5.3)

We must note that there is also a contribution to this background from the antisymmetric

tensor field. However, as we will only consider static configurations, it will not contribute

to the string action.

5.1 Wilson loops along transversal space

Before constructing the Wilson loop for the deformed SO(4) × SO(2) solution, we will

present a discussion which can be used in similar situations when other more general

supergravity backgrounds are considered. In order to confirm with established notation in

the literature, and also emphasize that it has the meaning of energy on the field theory

side, we will use u to denote the radial variable r in all the computations in this section.

The Nambu-Goto action for a static fundamental string stretching along a great circle in

the transversal background is

S =
T

2πα′

∫

dx
√

g(u)(∂xu)2 + f(u)/R4 + h(u)(∂xφ)2 , (5.4)

where g(u) = gττguu, f(u) = R4gττgxx and h(u) = gττgφφ. The factor T comes from the

time integration for a static configuration, because we have taken a rectangular Wilson

loop on the boundary, with one side of length L along the space direction and one of length

T along the Euclidean time direction. Conservation of energy and angular momentum lead

to two first order equations

f
√

gu′2 + f/R4 + hφ′2 = R2
√

1 − l2f
1/2
0 ,

hφ′
√

gu′2 + f/R4 + hφ′2 = lh
1/2
0 , (5.5)

where the two conserved quantities are associated with the constants u0 and l, and the

subscript indicates that the corresponding function is computed for u = u0, in which u(x)

develops a minimum. We have used the notation f0 = f(u0) and h0 = h(u0), and the

prime denotes derivatives with respect to x. Solving these equations for x and φ in terms

of u we find

x = R2f
1/2
0

√

1 − l2
∫ u

u0

du

√

g(u)

f(u)F (u)
, (5.6)

and

φ = lh
1/2
0

∫ u

u0

du

h(u)

√

g(u)f(u)

F (u)
, (5.7)

where we have defined

F (u) ≡ f(u)

(

1 − h0l
2

h(u)

)

− (1 − l2)f0 . (5.8)
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Note that this function vanishes at u = u0, i.e. F (u0) = 0. If we place the quark at

x = L/2, and the antiquark at x = −L/2, the length of the Wilson loop is

L = 2R2f
1/2
0

√

1 − l2
∫ ∞

u0

du

√

g(u)

f(u)F (u)
, (5.9)

and

∆φ = 2lh
1/2
0

∫ ∞

u0

du

h(u)

√

g(u)f(u)

F (u)
. (5.10)

The total energy of the Wilson loop is divergent because it includes the infinite contribution

from the W-bosons. When we subtract this contribution, the regularized energy of the

quark-antiquark pair reads

Eqq̄ =
1

π

∫ ∞

u0

du

[
√

g(u)f(u)

F (u)
−

√

g(u)

]

− 1

π

∫ u0

umin

du
√

g(u) , (5.11)

where umin is the minimum value of u allowed by the geometry. In specific examples we

are supposed to solve for the auxiliary parameters u0 and l in terms of the separation

distance L and the separation angle in the internal space ∆φ. In practice this cannot be

done explicitly for all values of the energy and length, but in some limited regions instead.

In general, unless l = 0 we have that ∆φ 6= 0. If l = 0 then ∆φ = 0 and the angle φ

remains constant. Then the function h(u) becomes irrelevant since it does not appear in

the expressions for the length and the energy, and all our expressions reduce to those in [28].

In the specific examples that follow we will explicitly see that this is indeed the function

encoding the deformation parameter γ̂. Therefore if l = 0 our results will necessarily reduce

to those for the undeformed theory.

The heavy quark-antiquark potential as computed using the above formulas should

obey the concavity condition

dEqq̄

dL
> 0 ,

d2Eqq̄

dL2
≤ 0 , (5.12)

stating that the force is always attractive and a non-increasing function of the separation

distance. These conditions were proved quite generally in [41], and were investigated in

detail for our examples in the case of zero deformation and angular parameters, i.e. for

γ̂ = l = 0, in [28]. For these values of the parameters and for certain trajectories the

potential failed to obey (5.12) for all separation lengths. The failure is attributed to the fact

that the trajectory approaches the singularity of the D3-brane background corresponding

to the location of the branes and it is precisely this region that gives rise to the violation

of the concavity condition beyond a certain length in the Wilson loop potential. Similar

situations will also arise in this paper for non-zero deformation and angular parameters.

5.2 The conformal limit

We will now analyze in detail some explicit configurations. In the conformal case all branes

are located at the origin. We have

g(u) = 1 , f(u) = u4 , h(u) =
u2

1 + γ̂2/4
, (5.13)
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and umin = 0. Also the function

F (u) = (u2 − u2
0)(u

2 + u2
0(1 − l2)) . (5.14)

Then we have for the length (we use 3.137(8 or 12) of [42])6

L = R2
√

1 − l2u2
0

∫ ∞

u2
0

dρ

ρ3/2
√

(ρ − u2
0)(ρ + u2

0(1 − l2))

=
2R2

u0

√

(1 − l2)(2 − l2)

[

(2 − l2)E (k) − K(k)
]

, (5.15)

where we have defined ρ = u2, and the modulus

k =

√

1 − l2

2 − l2
. (5.16)

For the angle we find (we use 3.131(8) and 3.137(8) of [42])

∆φ = l
√

1 + γ̂2/4 u
1/2
0

∫ ∞

u2
0

dρ
√

ρ(ρ − u2
0)(ρ + u2

0(1 − l2))

= 2
√

1 + γ̂2/4
l√

2 − l2
K(k) . (5.17)

Therefore we see that the only effect of the deformation is a simple γ̂-dependent overall

factor. The angle is a monotonously increasing function of the angular parameter l starting

from zero. As l increases we reach its maximum value,

∆φmax =
√

1 + γ̂2/4 π , for l = 1 . (5.18)

There are special values of γ̂ for which the string has wound up n times the circle parame-

terized by the φ angle. These are found by setting ∆φmax = 2πn in (5.18). They are given

by γ̂2
n = 4(4n2 − 1), n ∈ Z. Of course the string can wound up for smaller values of l as

well. It is not completely clear to us what the significance of these values for γ is. For the

energy we have (we use 3.141(12) and 3.141(18) of [42])

Eqq̄ =
1

2π

∫ ∞

u2
0

dρ

[
√

ρ

(ρ − u2
0)(ρ + u2

0(1 − l2))
− 1√

ρ

]

− u0

π

=
u0

π
√

2 − l2

[

K(k) − (2 − l2)E(k)
]

(5.19)

= −2R2

π

[

(2 − l2)E(k) − K(k)
]2

(2 − l2)
√

1 − l2
1

L
.

The Coulombic behaviour of the potential is characteristic of cases with conformal symme-

try since the only scale the enters in the various expressions is the quark-antiquark separa-

tion distance. For l = 0 this becomes the conformal result for N = 4 Yang-Mills [39, 40].

For larger angular parameter the result is still conformal but with an effective charge that

is a monotonously decreasing function of l until it becomes zero for l = 1. This vanishing

limit corresponds to a BPS configuration [40].

6We will use the notation K(k), E(k) and Π(n, k) for the complete integrals of the first, second and

third kind, respectively.
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5.3 The disc

When vev’s are turned one we expect that there should be some confining behaviour for

the potential and from the gauge theory side this was studied in [22]. In the case of a brane

distribution along a disc7

g(u) = 1 , f(u) = u2(u2 + r2
0) , h(u) =

u2(u2 + r2
0)

(1 + γ̂2/4)u2 + r2
0

, (5.20)

and umin = 0. Also the function

F (u) = (u2 − u2
0)(u

2 + w) , w ≡ (u2
0 + r2

0)

(

1 − (1 + γ̂2/4)l2u2
0

(1 + γ̂2/4)u2
0 + r2

0

)

> 0 . (5.21)

It turns out that in computing the integrals we have to distinguish between two cases

depending on which one of the two parameters w or r2
0 is larger. In fact we have that

w > r2
0 ⇐⇒ u2

0 >
(1 + γ̂2/4)l2 − 1

(1 + γ̂2/4)(1 − l2)
r2
0 (5.22)

and similarly for the reversed inequality. Note that for small enough angular parameter we

always have that w > r2
0, including the smallest value u0 = 0. It will be also convenient to

use the notation w>(w<) to denote the larger (smaller) between the parameters w and r2
0.

Then we have for the length (we use 3.137(8) of [42])

L = R2
√

1 − l2u0

√

u2
0 + r2

0

∫ ∞

u2
0

dρ

ρ
√

(ρ − u2
0)(ρ + r2

0)(ρ + w)

= 2R2
√

1 − l2
u0

w>

√

u2
0 + r2

0

u2
0 + w>

[

Π

(

w>

u2
0 + w>

, k

)

− K(k)

]

, (5.23)

where we have now defined the modulus

k =

√

w> − w<

u2
0 + w>

. (5.24)

For the angle we find (we use 3.131(8) and 3.137(8) of [42])

∆φ = lh
1/2
0

∫ ∞

u2
0

dρ
1 + γ̂2/4 + r2

0/ρ
√

(ρ − u2
0)(ρ + r2

0)(ρ + w)

=
2lh

1/2
0

√

u2
0 + w>

[

(

1 + γ̂2/4 − r2
0/w>

)

K(k) +
r2
0

w>
Π

(

w>

u2
0 + w>

, k

)]

. (5.25)

Also for the energy we have (we use 3.141(12) and 3.141(18) of [42])

Eqq̄ =
1

2π

∫ ∞

u2
0

dρ

[
√

ρ + r2
0

(ρ − u2
0)(ρ + w)

− 1√
ρ

]

− u0

π

=
1

π
√

u2
0 + w>

[

(u2
0 + r2

0)K(k) − (u2
0 + w>)E(k)

]

. (5.26)

7Setting r0 = 0 (no brane distribution) and γ̂ = 0 (no marginal deformation) reproduces the situation

originally considered in [40]. The case l = γ̂ = 0 recovers the results in [28].
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5.3.1 Generic behaviour

For u0 À r0 or, equivalently, at small distances, the vev can be ignored and the behaviour

of the Wilson loop potential turns to be that of the conformal case (5.19).8 Towards

larger distances the behaviour depends on the relation between the various parameters. If

(1 + γ̂2/4)l2 < 1 then the potential becomes monotonically zero at a finite distance. This

is the same as the behaviour of the Wilson loop in the undeformed case corresponding

to γ̂ = 0 and for zero angular parameter l = 0 found in [28]. If on the other hand

(1 + γ̂2/4)l2 > 1 the potential, after it turns into positive values, reaches a maximum and

then again approaches zero at a finite distance. In particular, using the properties of the

elliptic functions, we have that as u0 → 0

L ' πR2

r0

√

1 − l2
(

1 − u0

r0

)

,

∆φ ' πl

(

1 +
γ̂2

4

u0

r0

)

, (5.27)

Eqq̄ ' −
[

1 − (1 + γ̂2/4)l2
] u2

0

4r0
,

Hence we see that the energy goes to zero at a finite value of the length

Lfin =
πR2

r0

√

1 − l2 , (5.28)

resulting in a complete screening of charges at a finite distance. If we now use the expression

for the length of the loop in (5.27) to solve for u0 in terms of L, we find the vanishing

behaviour

Eqq̄ '−1 − (1 + γ̂2/4)l2

4
r0

(

Lfin − L

Lfin

)2

+ · · ·

' −1 − (1 + γ̂2/4)l2

4(1 − l2)
r3
0

(

Lfin − L

πR2

)2

+ · · · . (5.29)

Note that the way the zero energy is approached depends on the sign of 1 − (1 + γ̂2/4)l2,

as was mentioned above. For a positive sign the above length Lfin is indeed the maximum

distance between the quark and antiquark, beyond which there is no geodesic connecting

them. In this regime the solution is described by two parallel strings with no interac-

tion potential. The complete screening behaviour is qualitatively the same as that in [28],

where the case with γ̂ = l = 0 was analyzed in detail. In fact since the complete screening

behaviour happens for u0 → 0, which is when the trajectory approaches the brane distri-

bution, the continuous approximation breaks down and we should instead use the discrete

version of the brane distribution. Then the potential becomes gradually Coulombic but

with R2 in (5.19) replaced by a much smaller value corresponding to the number of D3-

branes located close to a particular center, i.e. R4 → 4πg2
YMNcenter, with Ncenter ¿ N .

In that sense the screening phenomenon still persists, but it is just made smoother. This

conclusion assumes that Ncenter À 1, so that the supergravity description is still valid.

8We should use the identity Π(k2, k) = E(k)/(1 − k2).
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L Length

Energy

fin

Figure 1: The energy (5.26) as a function of the quark-antiquark distance L. As the value of γ̂

evolves, the shape of Eqq̄ is modified and we go from the lower to the upper curve. For the upper

two curves the result is trusted until the maximum energy is reached. In those cases the maximum

length Lmax < Lfin. In the lower curve Lmax = Lfin.

For a negative sign for 1 − (1 + γ̂2/4)l2 and depending on the strength of the parameter

γ̂ as compared with l, the energy is a single, or a triple-valued function of the distance

(after a critical distance that can be computed numerically). We have depicted the various

behaviours in figure 1. Beyond the maximum for the energy the force between the heavy

quark and antiquark becomes repulsive and the concavity condition for the potential (5.12)

is not obeyed. This region is not physical and we think that this behaviour is due to the

large value of the deformations parameter γ̂ in relation to the trajectory approaching the

singularity. Then of course the continuous approximation breaks down and the potential

should reach a Coulombic behaviour as explained above.

5.3.2 Confining behaviour

In order to avoid the apparently unphysical region after the peak of the potential we should

cut off the region beyond this critical point. A careful analysis shows that this amounts

to avoiding the region in the deep IR by essentially restricting the energy parameter to

u0 À r0/γ̂. In the limit of large γ̂, the potential and length are given by (5.23) and (5.26)

but with w = (1 − l2)(u2
0 + r2

0) which arises from the definition (5.21) in the limit γ̂ → ∞.

We easily find that the potential reaches a constant positive value at a finite value of the

separation distance, thus again resulting in a complete screening of charges. They are

given by

Eqq̄,fin =
r0

π
[K(l) − E(l)] , Lfin =

πR2

r0
. (5.30)

The positive value of the maximum energy depends on the angular parameter l in such

a way that it grows when l approaches 1 as Eqq̄,fin ' − r0
2π ln(1 − l2) → ∞, so that in

practice the potential remains confining. This allows to consider the limit of a very large
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deformation parameter and simultaneously take the angular parameter to one, that is

γ̂ À 1 and l → 1 . (5.31)

This introduces a hierarchy of widely separated scales and in particular note that

r0

γ̂
¿ r0 ¿ r0√

1 − l2
. (5.32)

Next we will restrict to the potential corresponding to the corner of the parameter space

(5.31) and further impose the condition

r0

γ̂
¿ u0 ¿ r0√

1 − l2
. (5.33)

Since the parameter u0 plays essentially the rôle of the probe energy, this means that we

will not probe with extremely high energies in the UV, i.e. extremely higher than the vev

value or, equivalently, the separation length will not become extremely small. This cuts

off the conformal region. Similarly, by never probing with energies in the extreme IR we

decouple the region after the maximum of the potential. We find that in the limit (5.31)

the length (5.23) becomes

L̄ =
2

r0

E(k) − k′2K(k)

kk′ , (5.34)

where now the modulus simplifies to

k =

√

r2
0

u2
0 + r2

0

, with k′ =
√

1 − k2 (5.35)

and we have defined the finite length

L̄ =
L

R2
√

1 − l2
. (5.36)

For the angle (5.25) we find

∆φ = γ̂ K(k) , (5.37)

and for the energy (5.26) we obtain

Eqq̄ =
r0

π

K(k) − E(k)

k
. (5.38)

The potential obeys now the concavity conditions (5.12), and its behaviour is depicted in

figure 2.

Consider the large values

u0 À r0

(

and u0 ¿ r0√
1 − l2

)

⇔ L̄ ¿ 1

r0

(

and L̄ À
√

1 − l2

r0

)

, (5.39)
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Length

Energy

Figure 2: The energy (5.38) as a function of the quark-antiquark separation. For large values

of the distance we find the logarithmic confining dependence (5.43). For smaller separations the

behaviour is linear, (5.40).

where the inequalities inside the parentheses emphasize that energies cannot become ex-

tremely large and correspondingly the lengths cannot be too short. Otherwise the limit

(5.31) that resulted into (5.34)–(5.38) is not self-consistent in a mathematical and a physi-

cal sense. Then we obtain for the energy a linear behaviour as a function of the separation

distance,

Eqq̄ ' r2
0

4u0
' r2

0

2π
L̄ → 0 . (5.40)

For the angle we obtain the large limiting value

∆φ = γ̂
π

2
. (5.41)

Let us now consider the opposite limit of low values

u0 ¿ r0

(

and u0 À r0

γ̂

)

⇔ L̄ À 1

r0

(

and L ¿ γ̂

r0

)

, (5.42)

where, similarly to the previous case, the inequalities in the parentheses imply that the

region in the deep IR is avoided for the limit (5.31) to be self-consistent. For the energy

we find

Eqq̄ ' −r0

π
ln

(

u0

r0

)

' r0

π
ln

(

r0L̄
)

→ ∞ . (5.43)

Hence we have a confining behaviour for the heavy quark-antiquark potential, although

the dependence on the separation distance is not linear but logarithmic. For the angle we

obtain again a logarithmic behaviour

∆φ ' γ̂ ln(r0L̄) . (5.44)

It is worth commenting that a logarithmic form for a confining potential instead of a linear

one is not strange to high energy physics. Long ago it was shown that a logarithmic
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potential is unique in producing spectra with energy level spacing independent of the

particle mass [43], an idea that arose from related observations at particle spectra at the

time. In the same work the logarithmic potential was used in relation to quarkornium

spectra for various families of heavy qq̄ bound states (for related reviews on the use of

Schrödinger equation in heavy quark systems see [44]). This phenomenological way of

introducing a logarithmic potential in Particle Physics had no theoretical support within

perturbative approaches to QCD. More recently, in the context of potential non-relativistic

QCD, logarithmic terms arose, in calculations valid for length scales less than 1/ΛQCD, as

modifications of the effective charge in the Coulombic potential (see [45] and references

therein). Given our results, it will be interesting to investigate the issue of a logarithmic

confining behaviour from a gauge theoretical view point.

5.4 The sphere

This case follows from the expressions above if we let r2
0 → −r2

0 and take into account that

now umin = r0. Therefore we have

g(u) = 1 , f(u) = u2(u2 − r2
0) , h(u) =

u2(u2 − r2
0)

(1 + γ̂2/4)u2 − r2
0

. (5.45)

Also the function

F (u) = (u2 − u2
0)(u

2 + w) , w ≡ (u2
0 − r2

0)

(

1 − (1 + γ̂2/4)l2u2
0

(1 + γ̂2/4)u2
0 − r2

0

)

. (5.46)

It turns out that in this case we always have, although w is not a strictly positive constant,

that w > −r2
0, and therefore we do not have to distinguish between two different cases

depending on the values of w and r2
0, as in the disc case.

Then we have for the length (we use 3.137(8) of [42])

L = R2
√

1 − l2u0

√

u2
0 − r2

0

∫ ∞

u2
0

dρ

ρ
√

(ρ − u2
0)(ρ − r2

0)(ρ + w)

= 2R2
√

1 − l2
u0

w

√

u2
0 − r2

0

u2
0 + w

[

Π

(

w

u2
0 + w

, k

)

− K(k)

]

, (5.47)

where we have defined ρ = u2, and the modulus

k =

√

w + r2
0

w + u2
0

. (5.48)

For the angle we find (we use 3.131(8) of [42])

∆φ = lh
1/2
0

∫ ∞

u2
0

dρ
1 + γ̂2/4 − r2

0/ρ
√

(ρ − u2
0)(ρ − r2

0)(ρ + w)

=
2lh

1/2
0

√

u2
0 + w

[

(

1 + γ̂2/4 + r2
0/w

)

K(k) − r2
0

w
Π

(

w

u2
0 + w

, k

)]

. (5.49)
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For the regularized energy we now have (we use 3.141(12) of [42])

Eqq̄ =
1

2π

∫ ∞

u2
0

dρ

[
√

ρ − r2
0

(ρ − u2
0)(ρ + w)

− 1√
ρ

]

− u0 − r0

π

=
1

π
√

u2
0 + w

[

(u2
0 − r2

0)K(k) − (u2
0 + w)E(k)

]

+
r0

π
. (5.50)

As before, for short distances we may ignore the vev and the behaviour of the Wilson loop

remains that of the conformal case. For larger values of r0 we may easily show, using the

properties of the elliptic functions, that the length goes again to zero and therefore the

energy is a double valued function of the separation length. As before, if we consider the

limit of large γ̂ together with l → 1 we will cut off the conformal part of the potential. In

these limiting case we obtain for the length and the energy the simplified expressions

L̄ =
2

r0

k′

k
[K(k) − E(k)] (5.51)

and

Eqq̄ =
r0

π

(

k′2

k
K(k) − 1

k
E(k) + 1

)

, (5.52)

where now the modulus is k = r0/u0 and L̄ is defined as in (5.36). Using properties of the

elliptic functions one easily verifies that the separation L goes to zero both for k → 0 and

k → 1 and therefore there is no confining behaviour. We note that there is such behaviour

(linear) for the θ = π
2 trajectory which however, as remarked in footnote 5, is not sensitive

to the deformation. The energy is a doubled valued function of the length. The angular

distance now becomes

∆φ = γ̂k′K(k) . (5.53)

6. The wave equation

In this section we study the massless scalar field equation

¤Ψ =
1√
−G

e+2Φ∂M

√
−Ge+2ΦGMN∂NΨ = 0 , (6.1)

in the deformed SO(4) × SO(2) background. Quite generally, for the background metric

(2.24) and the dilaton (2.26), it can be shown that the above equation can be written as a

deformation of the corresponding equation for the undeformed background,

¤Ψ = ¤γ=0Ψ + γ2λij ∂i∂jΨ = 0 , (6.2)

where we have defined

λij ≡
z1z2 + z1z3 + z2z3

zi
δij −

z1z2z3

zizj
. (6.3)

Let us now study each of the pieces entering this differential equation.

– 22 –



J
H
E
P
0
3
(
2
0
0
6
)
0
6
9

6.1 The undeformed case

First we will examine the Laplacian for the undeformed case with γ̂ = 0. This case is on its

own already very interesting because it describes the spectrum of dilaton, transverse gravi-

ton and gauge field fluctuations in the undeformed background.9 Within the AdS/CFT

correspondence these fluctuations correspond to gauge theory operators. In that respect

the s-wave case has been explicitly first solved in [27, 28]. In that case the description

can be made also using the five-dimensional gauged supergravity arising from reduction of

type-IIB supergravity on S5. Here, we will see that we can go beyond gauged supergravity

and explicitly solve this equation in all generality. We will shall see below that, turning on

the deformation will not affect dramatically most of our analysis of this subsection.

For the background corresponding to the disc distribution we make the ansatz

Ψ =
1

(2π)2
eik·xΨ⊥(r, θ, φ1, ψ, φ2, φ3) . (6.4)

Obtaining the corresponding differential equations below for the sphere or the conformal

cases simply amounts to analytically continuing the parameter r2
0 to −r2

0 or setting it to

zero, respectively. Then after some algebra we find the following second order differential

equation for the Laplace operator acting on the amplitude

¤γ=0Ψ∼ r

R2
√

r2 + r2
0 cos2 θ

[

R4M2

r2
+

1

r3
∂rr

3(r2 + r2
0)∂r +

1

sin θ cos3 θ
∂θ sin θ cos3 θ∂θ

+

(

1

sin2 θ
− r2

0

r2 + r2
0

)

∂2
φ1

+

(

1

cos2 θ
+

r2
0

r2

)

∆S3

]

Ψ⊥ , (6.5)

where the mass eigenvalue is defined as

M2 ≡ −k2 , (6.6)

and where we have omitted an overall coefficient and the factor from the exponential.

Obviously the Laplace equation corresponding to the operator in (6.5) admits solutions via

the separation of variables method. Let

Ψ⊥(r, θ, φ1, ψ, φ2, φ3) =
1√
2π

einφ1ΨS3(ψ, φ2, φ3)ψ
(1)(θ)ψ(2)(r) , n ∈ Z . (6.7)

For the ΨS3 piece we get the standard eigenvalue equation on S3

∆S3ΨS3 = −l(l + 2)ΨS3 , l = 0, 1, . . . , (6.8)

9These spectra are in fact degenerate and the corresponding fluctuations are interrelated and can be

written in terms of the dilaton fluctuations. These have been exposed in a series of papers, for the dilaton-

gravity in [46] and for the dilaton-gauge fields in [47, 48]. This interrelation is essentially due to the fact

that all fluctuations correspond to fields that belong to the same N = 4 supergravity multiplet [47]. It

would be very interesting to see whether such a coincidence of spectra persists in the marginally deformed

N = 1 case as well.
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or, explicitly,

1

sin 2ψ

∂

∂ψ

(

sin 2ψ
∂ΨS3

∂ψ

)

+

(

l(l + 2) +
∂2

φ2

cos2 ψ
+

∂2
φ3

sin2 ψ

)

ΨS3 = 0 . (6.9)

The normalized solution is given by

ΨS3,l,n2,n3
(θ, φ2, φ3) = Al,n1,n2e

i(n2φ2+n3φ3)(sin ψ)|n3|(cos ψ)|n2|P (|n3|,|n2|)
k (cos 2ψ) ,

l − |n2| − |n3| = 2k , k = 0, 1, . . . , (6.10)

where the normalization constant is

A2
l,n1,n2

=
l + 1

π

Γ(1
2 l + 1

2 |n2| + 1
2 |n3| + 1)Γ(1

2 l − 1
2 |n2| − 1

2 |n3| + 1)

Γ(1
2 l + 1

2 |n3| − 1
2 |n2| + 1)Γ(1

2 l − 1
2 |n3| + 1

2 |n2| + 1)
. (6.11)

The mass eigenvalue has degeneracy

d3,l =

∞
∑

k=0

∞
∑

n2,n3=−∞
δ2k+|n2|+|n3|,l =

∞
∑

k,p=0

δ2k+p,l

∞
∑

n2,n3=−∞
δ|n2|+|n3|,p

=

∞
∑

k,p=0

(4p + δp,0)δ2k+p,l (6.12)

= (l + 1)2 ,

which is the correct expression.10 Using the above we obtain, for the other factors,

1

sin θ cos3 θ

d

dθ
sin θ cos3 θ

dψ(1)

dθ
+

(

E − n2

sin2 θ
− l(l + 2)

cos2 θ

)

ψ(1) = 0 (6.14)

and

d

dr
r3(r2 + r2

0)
dψ(2)

dr
+

[

(M2R4 − l(l + 2)r2
0)r +

r2
0r

3

r2 + r2
0

n2 − Er3

]

ψ(2) = 0 , (6.15)

where E is the separation of variables constant. The measure for the resulting Hilbert

space is

√
−GGtt = d4x(drr)(dθ sin θ cos3 θ)(dψ sin ψ cos ψ) . (6.16)

It is quite remarkable that the equations for the angular part, and in particular (6.14),

do not depend on the parameter r0 characterizing the vev of the scalar fields. Hence we

expect that E should be quantized and written as E = j(j +4), j = 0, 1, . . . as appropriate

10A general eigenstate of the Laplace operator on the unit n-sphere has energy eigenvalue and degeneracy

given by (see, for instance, [49])

En,j = j(j + n − 1) , j = 0, 1, . . . ,

dn,j =
(2j + n − 1)(j + n − 2)!

(n − 1)!j!
. (6.13)
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for the Laplacian on the undeformed S5. This is not immediately apparent, but it works

precisely like that as we shall prove. Writing

ψ(1) = (1 − x)|n|/2(1 + x)l/2F (x) , x = cos 2θ , |x| ≤ 1 , (6.17)

we obtain an equation for F (x) which is the Jacobi differential equation with α = |n| and

β = l + 1 in the standard notation.11 It has the Jacobi polynomials as a complete set of

orthonormal solutions provided that the parameter E is quantized as

Em,l,n = (l + |n| + 2m)(l + |n| + 2m + 4) , m = 0, 1, . . . . (6.18)

Indeed this takes the form j(j + 4), with j = l + |n| + 2m, as advertised. Moreover,

the degeneracy of this state works out as it should be. Indeed, note that in general the

degeneracy is given by

d5,j =
∞

∑

m,l=0

∞
∑

n=−∞
d3,lδl+|n|+2m,j =

∞
∑

m,p=0

δp+2m,j

[ ∞
∑

l=0

∞
∑

n=−∞
(l + 1)2δl+|n|,p

]

=
1

3

∞
∑

m,p=0

(p + 1)(2p2 + 4p + 3)δp+2m,j (6.19)

=
1

12
(j + 1)(j + 2)2(j + 3) ,

which is the correct expression (see (6.13) with n = 5). Then

ψ
(1)
m,l,n(θ) = Bm,l,n sin|n| θ cosl θP (|n|,l+1)

m (cos 2θ) , (6.20)

where the normalization constant obeys

B2
m,l,n = 2(2m + 2 + l + |n|)Γ(m + 1)Γ(m + l + |n| + 2)

Γ(m + |n| + 1)Γ(m + l + 2)
. (6.21)

The integration measure that determined the normalization constant is dθ sin θ cos3 θ, with

0 ≤ θ ≤ π/2.

Let us now present the solution to the remaining radial equation. We will have to

distinguish between the conformal, the disc and the sphere cases.

11More precisely, if we change variable as z = (1+cos 2θ)/2, then the differential equation for ψ(1) trans-

forms into a second order ordinary differential equation of the Fuchsian type with three regular singularities

at z = 0, 1 and ∞. Such an equation can be transformed into the canonical form of a hypergeometric

equation. The latter is transformed to the Jacobi equation by a simple variable change x = 2z − 1(= cos 2θ

as in (6.17)) which has polynomial solutions provided the parameters a, b, c in the standard notation are

related to, at least, an integer. The same reasoning applies for the differential equation for ψ(2) that is

considered separately for the conformal, the disc and the sphere cases below. We explain in section 6.3 that

in the deformed case the nature of the singularity at z = ∞ changes from a regular to an irregular one and

as a result we cannot solve the corresponding differential equation by elementary methods.
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6.1.1 The conformal limit

In this case we have to solve equation (6.15) after setting the parameter r0 = 0. This can

be written as a Schrödinger equation by letting

ψ(2) = z3/2Ψ(z) , z =
1

r
, z ≥ 0 . (6.22)

Then Ψ satisfies the standard Schrödinger equation with potential

V (z) =
15/4 + Em,l,n

z2
(6.23)

and eigenvalue M2R4. This potential is positive definite and vanishes for large values of z.

Hence we expect a continuous spectrum with no mass gap. The explicit solution is

ψ(2) =
√

Mz2Jj+2(Mz) , j = 0, 1, . . . , (6.24)

where j is the integer that parametrizes the eigenvalue in (6.18) as we have mentioned

above.

6.1.2 The disc

In the previous section we have found a vanishing behaviour beyond a maximal length

for the interaction potential between a heavy quark and an antiquark. A maximal length

implies the existence of a set of small energy scales that we can not reach. Therefore the

gauge theory must generate a mass gap at strong coupling. We will now prove the existence

of this mass gap from the solution to equation (6.15). We note first that (6.15) can be

written again as a Schrödinger equation. Indeed let

ψ(2) =
sinh3/2 z

cosh1/2 z
Ψ(z) , sinh z =

r0

r
, z ≥ 0 . (6.25)

Then Ψ satisfies the standard Schrödinger equation with potential

V (z) = (l + 1)2 − n2 − 1/4

cosh2 z
+

15/4 + Em,l,n

sinh2 z
, (6.26)

and eigenvalue M2R4/r2
0 . This belongs to the family of Pöschl-Teller potentials in quantum

mechanics of type II. The potential decreases monotonically from arbitrarily large positive

values, where it behaves as in the conformal case in (6.23), to the constant (l + 1)2 as z

ranges from 0 to ∞. Hence we expect a continuous spectrum with a mass gap given by

Mgap,l = (l + 1)
r0

R2
, (6.27)

which is degenerate according to (6.12). In order to explicitly solve equation (6.15) we

perform the change of variables

ψ(2) = ζ−1/2+iδ/2(1 − ζ)m+|n|/2+2F (ζ) , ζ =
r2

r2 + r2
0

=
1

cosh2 z
, 0 ≤ ζ ≤ 1 , (6.28)
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where δ is a constant to be determined. After some algebra we obtain a standard hyper-

geometric equation for F (ζ), whose general solution leads to

ψ
(2)
l,m,n(r) = N ζ−1/2(1 − ζ)m+|n|/2+2

(

eiϕζiδ/2
2F1 (a, a, 1 + iδ, ζ) + c.c.

)

,

= N ζ−1/2(1 − ζ)−m−|n|/2
(

eiϕζiδ/2F (b, b, 1 + i + iδ, ζ) + c.c.
)

(6.29)

where N is an overall normalization constant and

a =
1

2
(|n| + 2m + 3 + iδ) , b = 1 + iδ − a , δ =

√

M2R4/r2
0 − (l + 1)2 . (6.30)

The phase ϕ is computed by demanding that the solution is regular at ζ = 1 (equivalently

at r → ∞). We find that

ϕ =
π

2
+ Arg

(

Γ2(a)

Γ(1 + iδ)

)

. (6.31)

As in [27, 28], where the s-wave case with l = n = 0 was studied in detail, normalizability

of the solution in the Dirac sense requires that the parameter δ is real and therefore the

spectrum is continuous, with the mass gap (6.27).

6.1.3 The sphere

As in the previous cases eq. (6.15) (with r2
0 → −r2

0) can also be written as a Schrödinger

equation. Now let

ψ(2) =
sin3/2 z

cos1/2 z
Ψ(z) , sin z =

r0

r
, 0 ≤ z ≤ π/2 . (6.32)

Then Ψ satisfies the standard Schrödinger equation with potential

V (z) = −(l + 1)2 +
n2 − 1/4

cos2 z
+

15/4 + Em,l,n

sin2 z
, (6.33)

and eigenvalue M2R4/r2
0 . This belongs to the family of Pöschl-Teller potentials in quantum

mechanics of type I. To find the explicit solution we perform a change variables again

through

ψ(2) = (1 − ζ)m+l/2+|n|/2(1 + ζ)|n|/2F (ζ) , ζ = 1 − 2
r2
0

r2
, |ζ| ≤ 1 . (6.34)

Then we obtain the standard Jacobi differential equation, with α = 2m + l + n − 2 and

β = n. The corresponding normalized solutions are

ψ
(2)
k,m,l,n(r) = C2

k,m,n

(r0

r

)2m+l+|n|+4
(

1 − r2
0

r2

)|n|/2

P
(2m+l+|n|+2,|n|)
k (1 − 2r2

0/r
2) ,

k = 0, 1, . . . , (6.35)

where the normalization constant obeys

C2
k,m,n = 2(2k + 2m + l + 2|n| + 3)

Γ(k + 1)Γ(k + 2m + l + 2|n| + 3)

Γ(k + 2m + l + |n| + 3)Γ(k + |n| + 1)

1

r2
0

. (6.36)
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The mass eigenvalue is

M2
k,m,l,n = 4(k + m + |n| + 1)(k + m + |n| + l + 2)

r2
0

R4
. (6.37)

The measure that determined the normalization constant is drr, with r0 ≤ r < ∞. This

mass eigenvalue is of the form M2 = 4(j + 1)(j + l + 2)r2
0/R

4, with j = k + m + |n|. Its

degeneracy follows from a computation similar to that in (6.19),

dsphere,l,j = d3,l

∞
∑

m,k=0

∞
∑

n=−∞
δk+m+|n|,j = (l + 1)2

∞
∑

m,p=0

δm+p,j

[ ∞
∑

k=0

∞
∑

n=−∞
δk+|n|,p

]

= (l + 1)2
∞
∑

m,p=0

(2p + 1)δm+p,j (6.38)

= (l + 1)2(j + 1)2 .

6.2 The deformed case

In this case we have to take into account the second term in the right hand side of (6.2). In

general this term destroys the SO(4) spherical symmetry, unless we consider solutions that

are independent of the angles φ2,3 of S3, as parametrized in (3.9). We will then consider

the Laplace operator within the ansatz

Ψ =
1

(2π)2
eik·xΨ⊥(r, θ, φ1, ψ) , (6.39)

which is a restricted version of (6.4). We obtain now an expression similar to (6.5), with

an additional term inside the bracket. In particular,

¤Ψ ∼ r

R2
√

r2 + r2
0 cos2 θ

[

· · · + γ̂2 cos2 θ∂2
φ1

]

Ψ⊥ , (6.40)

where the ellipsis denotes the terms inside the bracket in (6.5). The measure in the Hilbert

space is given generally by
√
−Ge−2ΦGtt. This is given, based on general grounds,12 by

the right hand side of (6.16), but it can be also verified by an explicit calculation.

Proceeding as in the undeformed case we make for the amplitude the ansatz13

Ψ⊥(r, θ, φ1, ψ) =
1√
2π

einφ1ΨS3(ψ)ψ(1)(θ)ψ(2)(r) , n ∈ Z . (6.41)

For ΨS3 we obtain the same equation as in (6.8) but with no φ2,3 for the solution. Hence,

from (6.10) we have that l = 0, 2, . . . so that we make the replacement l → 2l. Now

12Since e−2Φ
√

G is, in general, invariant under T-duality and Gtt is not affected by the T-dualities we

performed.
13If we make a general ansatz of the form Ψ⊥ ∼ einiφiψ(1)(ψ, θ)ψ(2)(r), where ni ∈ Z, the modification

of the differential equation depends on the matrix λij in (6.2) via a term of the form −γ2λijninj . For

general integers ni this ansatz will break the spherical SO(4) symmetry of our background and there is no

longer factorization of the ψ and θ dependencies. However, if n2 = n3 the spherical symmetry is preserved.

Then using (3.11) we may easily show that the expressions below are still valid provided we replace n2 by

(n − n2)
2.

– 28 –



J
H
E
P
0
3
(
2
0
0
6
)
0
6
9

the eigenvalues are of the form 4l(l + 1) and the normalized solution is given in terms of

Legendre polynomials as

ΨS3,l = 2

(

l +
1

2

)1/2

Pl(cos 2ψ) , l = 0, 1, . . . . (6.42)

For the radial factor ψ(2) we obtain the same equations as in (6.15) with the replacement

l → 2l. The only major modification is in the equation for the angular part ψ(1) which

now gets an additional term and becomes

1

sin θ cos3 θ

d

dθ
sin θ cos3 θ

dψ(1)

dθ
+

[

E − n2

(

1

sin2 θ
+ γ̂2 cos2 θ

)

− 4l(l + 1)

cos2 θ

]

ψ(1) = 0. (6.43)

This equation can also be written as a Schrödinger equation. Indeed let

ψ(1) =
Ψ(θ)

sin1/2 θ cos3/2 θ
. (6.44)

Then Ψ satisfies the standard Schrödinger equation with potential

V (θ) = −4 +
n2 − 1/4

sin2 θ
+

4l(l + 1) + 3/4

cos2 θ
+ n2γ̂2 cos2 θ (6.45)

and eigenvalue E. When n = 0 (or n = n2 = n3, see footnote 13), the results obtained for

the undeformed case carry over unchanged. For n 6= 0 we could not solve this equation by

elementary means for reasons related to the change in nature of the singularity at infinity,

as described in footnote 11. Nevertheless, we may resort to perturbation theory which is

valid for small values of the effective parameter n2γ̂2, and to an asymptotic expansion for

large values of the same parameter. We will return to the generic case later.

6.2.1 The case with γ̂2n2 ¿ 1

In the limit γ̂2n2 ¿ 1 we can treat the last term in the potential (6.45) as small. The corre-

sponding shift in the energy eigenvalue can then be found from conventional perturbation

theory. Using the wavefunction (6.20) we get

δEm,l,n =
1

2
n2γ̂2B2

m,l,n

∫ +1

−1
dx(1 − x)|n|(1 + x)l+2 [P |n|,l+1

m (x)]2 > 0 . (6.46)

For l = 0 the integral can be computed. We found that

δEm,0,n = 24+|n| (m + 1)(m + |n| + 1)

(2m + |n| + 3)(2m + |n| + 1)
n2γ̂2 . (6.47)

The corresponding change in the eigenfunctions ψ(1) is also computable using perturbation

theory, but it will not be presented here. The change in the values of Em,l,n are affecting

the differential equation for the radial factor ψ(2) according to (6.15). It can be easily seen,

for instance from the form of the potentials for the effective Schrödinger problems (6.23),

(6.26) and (6.33), that the effect due to the shift δEm,l,n can be absorbed by an effective
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shift in the quantum number m. This can be computed by varying (6.18) with respect to

m and identifying the result with the perturbative result (6.46). In this way we find

δm =
δEm,l,n

4(l + |n| + 2m + 2)
. (6.48)

For the conformal and the disc cases the continuum mass spectrum for M2 remains un-

changed, except of course for the density of states which depends on the wavefunction. For

the sphere case the spectrum changes as

δM2
k,m,l,n =

2k + 2m + 2|n| + l + 3

2m + |n| + 2
δEk,m,l,n > 0 . (6.49)

6.2.2 The case with γ̂2n2 À 1

In this case for generic values of the angle θ, i.e. not near θ = 0, π/2, the potential goes

to +∞ and the wave function has the form of plane waves of very high energy. However,

there are special states that are actually quasi-localized or even localized near θ = 0 and

θ = π/2, respectively.

Region near θ = 0: Let the change of variables

θ =
z

nγ̂
. (6.50)

Then, within our limit the variable z becomes non-compact with z ≥ 0 and the problem

becomes equivalent to a Schrödinger problem with potential

V (z) =
n2 − 1/4

z2
+ 1 , z ≥ 0 , (6.51)

so that the spectrum is continuous with mass gap. The solution is

ψ(1) ∼
√

Ē − 1 Jn

(
√

Ē − 1z
)

, Ē =
E

n2γ̂2
, (6.52)

with the measure induced by (6.16) being dzz. Note also that in our limit ψ(1) ∼ z−1/2Ψ.

This solution is quasi-localized near z = 0 (for θ ∼ 1
nγ̂ ) in the sense that it dies off oscillating

with a power law behaviour away from it.

Region near θ = π/2: Let the change of variables

θ =
π

2
− z√

nγ̂
. (6.53)

Then, as before, within our limit the variable z becomes non-compact with z ≥ 0 and the

problem becomes equivalent to a Schrödinger problem with potential

V (z) =
4l(l + 1) + 3/4

z2
+ z2 , z ≥ 0 (6.54)

and rescaled energy parameter Ē = E
nγ̂ . The essential difference with the previous case

is that the potential gets a term corresponding to a harmonic oscillator. The Schrödinger
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equation can be transformed into a confluent hypergeometric equation. The solution reg-

ular for z = 0 is then given by

ψ(1) ∼ z2le−z2/2F (l + 1 − Ē/4, 2l + 2, z2) . (6.55)

The measure induced by (6.16) is dzz3. Note also that in our limit ψ(1) ∼ z−3/2Ψ. For

generic values of Ē, the confluent hypergeometric function appearing in the solution di-

verges exponentially as ez2
, as z → ∞. In order to avoid this behaviour at infinity we

demand polynomial solutions which implies a quantization for the eigenvalue Ē, as ex-

pected from the shape of the potential. Writing the result for the original energy constant

E we have that

Em,l,n ' 4(m + l + 1) nγ̂ , m = 0, 1, . . . as nγ̂ À 1 , (6.56)

When γ̂ À 1 this formula is valid for n ≥ 1. Obviously, the solution is localized near z = 0

(for π
2 − θ ∼ 1√

nγ̂
) in the sense that it dies off exponentially away from it.

6.3 Relation to the Heun equation and the Inozemtsev model

We turn now to a general study of the equation (6.43) for the angular function ψ(1)(θ) in

the deformed case. The substitution

ψ(1) = (1 − z)|n|/2zlF (z) , z = cos2 θ , (6.57)

gives the following equation for the function F (z)

d2F

dz2
+

(

2(l + 1)

z
+

|n| + 1

z − 1

)

dF

dz
+

n2γ̂2z − E + (2l + |n|)(2l + |n| + 4)

4z(z − 1)
F = 0 . (6.58)

This is a second order ordinary differential equation with two regular singular points at

z = 0 and at z = 1, together with an irregular singularity at z = ∞. Hence it is expected

to correspond to a confluent form of the Heun differential equation (see, for instance, [50]).

The latter is the standard form of a Fuchsian differential equation with four regular singu-

larities. Similar to the case of the confluent hypergeometric equation, under a confluence

process two of the singularities are made to coincide resulting into an irregular one.

There is an appealing relation of the Heun differential equation to the integrable BC1

Inozemtsev model. The BC1 Inozemtsev system is a one-particle quantum mechanical

model in one dimension with potential

V =

3
∑

i=0

li(li + 1)℘(z + ωi) , (6.59)

where ℘(z) is the Weierstrass elliptic function, which is doubly periodic in the z variable

with half-periods ω and ω′. The Weierstrass elliptic function obeys

(℘′)2 = 4(℘ − e1)(℘ − e2)(℘ − e3) , (6.60)

where the constants ei’s obey ℘(ω) = e1, ℘(ω + ω′) = e2 and ℘(ω′) = e3. In case they are

in a straight line in the complex plane, e2 is assumed to lie between e1 and e3. In addition,
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they sum up to 0. In the notation of (6.59) ω0 = 0, ω1 = ω, ω2 = ω′ and ω3 = ω + ω′.
This model was shown to be completely integrable in [51] and it belongs to the class of

BCN integrable quantum N-particle systems with BN symmetry. It is a generalization of

the BCN Calogero-Moser-Sutherland model.

The expression of the Heun equation in terms of elliptic functions was essentially known

by Darboux. The explicit relation of the BC1 Inozemtsev model to the Heun equation can

be found, for instance, in [50, 52, 53]. The potential (6.59) was also studied in [54], in the

context of the theory of elliptic solitons. It was shown that if the above coupling constants

li, with i = 0, 1, 2, 3, are all integers, then the potential (6.59) has the finite gap property.

We will now consider the so-called trigonometric limit of the Schrödinger equation cor-

responding to (6.59). In the standard version of this limit we end up with the trigonometric

Pöschl-Teller potential, which in our case is the potential (6.45), but with γ̂ = 0. Therefore,

if such a limit is taken, we do not capture the deformation. Here we will take instead a

type of trigonometric limit which can take into account the effect of the deformation. In

the mathematics literature this was considered before in various forms (see [55, 56]). In

general, in the trigonometric limit, we take the limit e2 → e3. Then one of the half-periods

becomes imaginary infinity, say ω′ → i∞. In order to investigate this limit it is better

to consider the series representation of the Weierstrass function in terms of powers of the

parameter q = eiπτ , where τ is the modular parameter defined as τ = ω3/ω1. We take

the half-periods to be ω1 = 1
2 , ω2 = − τ+1

2 and ω3 = −ω1 − ω2 = τ
2 . Then using standard

expansions for the Weierstrass function and keeping only the relevant to our discussion

terms, we find

℘(x) = −π2

3
+

π2

sin2 πx
+ 16π2 sin2 πx q2 + O(q4) ,

℘(x + ω1) = −π2

3
+

π2

cos2 πx
+ 16π2 cos2 πx q2 + O(q4) ,

℘(x + ω2) = −π2

3
+ 8π2 cos 2πx q + 8π2(1 − 2 cos 4πx) q2 + O(q3) , (6.61)

℘(x + ω3) = −π2

3
− 8π2 cos 2πx q + 8π2(1 − 2 cos 4πx) q2 + O(q3) .

Next we scale and shift the energy as

E → π2

(

E − 1

3

3
∑

i=0

li(li + 1)

)

(6.62)

and let

l2 =
c

q
+

1

2

(

d

c
− 1

)

, l3 = − c

q
+

1

2

(

d

c
− 1

)

, (6.63)

where c, d are real constants. Then the limit q → 0 exists even though the parameters l2 and

l3 in the potential both go to infinity. If we define the angular variable θ = −π/2+πx, taking

values in the range θ ∈ [−π/2, π/2] we obtain a one-dimensional Schrödinger equation with

potential

V (θ) =
l0(l0 + 1)

cos2 θ
+

l1(l1 + 1)

sin2 θ
+ 2c2(1 − 2 cos 4θ) − 16d cos 2θ . (6.64)
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We call this the generalized trigonometric limit, in distinction to the ordinary one for which

c = d = 0. The potential (6.45) corresponds, up to an additive constant, to the particular

case c = 0, d = − 1
32n2γ̂2, l0 = 2l + 1

2 and l1 = n − 1
2 . Also the range of θ is restricted to

θ ∈ [0, π/2] (this can be done by requiring vanishing eigenfunctions for θ = 0).

The advantage of having a precise relation of (6.45) with the Heun equation and the

BC1 one-particle quantum Inozemtsev integrable model is the fact that techniques have

been developed based on the Bethe ansatz in order to determine the eigenvalue problem

for the general potential (6.59). In particular, in [57] an explicit solution was presented.

However, it still involves satisfying l + 4, with l =
∑3

i=0 li, complicated relations involving

Theta-functions for l auxiliary parameters. Solving this problem in general seems impos-

sible. In [57] it was shown how to solve this problem in the ordinary trigonometric limit

employing the Bethe ansatz. The result reduces to Jacobi polynomials as in our case, in

a presumably equivalent solution. We expect that progress can be made using the Bethe

ansatz method even in the generalized trigonometric limit.

7. Conclusions

In this paper we have constructed type-IIB supergravity duals to the Coulomb branch of a

class of exactly marginal deformations of N = 4 supersymmetric Yang-Mills theory. The

solutions can be derived by applying a sequence of T-dualities and coordinate shifts to

multicenter supergravity backgrounds, similarly to the conformal case [6]. On the gravity

side of the AdS/CFT correspondence the marginal perturbation leads to a deformation of

the space transversal to the worldvolume of the branes. We have probed the geometry of

the marginal deformation by computing the expectation value of the Wilson loop operator

from a string extending along a great circle of this deformed transversal space. The cases

that we have considered in detail correspond to a continuous distribution of D3-branes

on a disc or on the surface of a three-dimensional sphere, and preserve an SO(4) × SO(2)

global symmetry group. In the conformal limit, where the Higgs vev remains small, we

observed the usual Coulomb behaviour for the quark-antiquark potential. The background

corresponding to a distribution of branes on a disc is quite rich, and contains several

regimes according to the relation between the various parameters. In particular we have

found situations where the quark-antiquark interaction is completely screened as in [28],

or where a confining behaviour arises, with a linear or logarithmic potential according to

the ratio of the quark-antiquark separation distance to the Higgs vev scale. It would be of

great interest to explore this novel behaviour on the field theory side of the correspondence

and in particular to explore the origin of this logarithmic dependence.

We have also described the spectra of massless excitations by solving the Laplace

equation in the deformed SO(4) × SO(2) background. In order to solve the corresponding

differential equations we have transformed them into Schrödinger equations with a potential

determined by the geometry of the supergravity background. We have performed a detailed

analysis of the equation in the N = 4 limit, with no deformation, for the conformal, the

disc and the sphere distributions. It is quite remarkable that it is possible to explicitly solve

this problem beyond the s-wave approximation that has been considered before [27, 28].
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It will be interesting to extend the analysis to the full class of models corresponding to the

gravity-scalar sector (with scalars in the coset SO(6, R)/SO(6)) of five-dimensional gauged

supergravity that admit a classification via a correspondence with algebraic curves [29]. In

the deformed background we have relied on perturbation theory to find a solution for small

values of the deformation parameter, or on an asymptotic expansion in the opposite limit.

Generic values of the deformation lead to a confluent form of the Heun differential equation,

which is known to be related to the Inozemtsev integrable system. This relation provides a

tool to find solutions to the differential equation through the Bethe ansatz method. In this

article we have introduced a modification of the usual trigonometric limit to give account

of the deformation parameter. A complete attempt to investigate the spectral problem in

the generalized trigonometric limit that we have performed is definitely worth the effort.
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